A Model-based Predictive Control Scheme for Steal Rolling Mills Using Neural Networks

نویسندگان

  • José Maria Gálvez
  • Luis Enrique Zárate
چکیده

A capital issue in roll-gap control for rolling mill plants is the difficulty to measure the output thickness without including time delays in the control loop. Time delays are a consequence of the possible locations for the output thickness sensor which is usually located some distance away from the roll gap. In this work, a new model-based predictive control law is proposed. The new scheme is a neural network based predictive control structure which is applied to roll-gap control with outstanding results. It is shown that the neural network based predictive control permits to overcome the existing time delays in the system dynamics. The proposed scheme implements a virtual thickness sensor which releases an accurate estimate of the actual output thickness. It is shown that the dynamic response of the rolling mill system can be substantially improved by using the proposed controller. Simulation results are presented to illustrate the controller performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Adaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network

An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...

متن کامل

Predictive Model for the Cold Rolling Process through Sensitivity Factors via Neural Networks

The mathematical modeling of the rolling process involves several parameters that may lead to non-linear equations of difficult analytical solution. Such is the case of Alexander's model (Alexander 1972), considered one of the most complete in the rolling theory. This model requires excessive computational time, which prevents its application in on-line control and supervision systems. In this ...

متن کامل

Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation

This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...

متن کامل

Simultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks

In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999